DIVISÃO CELULAR

Alunas: Leuda e Geane Turma 1º N

Sumário
Ciclo Celular - meiose e mitose
Ciclo celular
Controle do ciclo celular
Fatores do crescimento e do ciclo celular
Mitose
Fases da Mitose
Atividade da síntese no ciclo celular
Meiose

CICLO CELULAR - MEIOSE E MITOSE.

Sabemos que a reprodução é uma propriedade fundamental das células. As células se reproduzem através da duplicação de seus conteúdos e posterior divisão em duas células filhas, este processo é a garantia de uma sucessão contínua de células identicamente dotadas.
Em organismos unicelulares, existe uma pressão seletiva para que cada célula cresça e se divida o mais rápido possível, porque a reprodução celular é responsável pelo aumento do número de indivíduos. Nos organismos multicelulares, a produção de novas células através da duplicação permite a divisão do trabalho, no qual grupos de células tornam-se especializados em determinada função.
Essa multiplicação celular porém, tem que ser regulada porque a formação de novas células tem que compensar a perda de células pelos tecidos adultos. Um indivíduo adulto possui 10 x1013 , todas derivadas de uma única célula, o óvulo fecundado. Mesmo em um organismo adulto, a multiplicação celular é um processo contínuo. O homem possui 2,5x1013 eritrócitos, cujo tempo de vida médio e de 107 segundos ( 120 dias ) para manter esses níveis constantes são necessárias 2, 5 milhões de novas células pôr segundo. Apesar de inúmeras variações existentes, os diferentes tipos celulares apresentam um nível de divisão tal que é ótimo para o organismo como um todo, porque o que interessa é a sobrevivência do organismo como um todo e não de uma célula individual. Como resultado as células de um organismo dividem-se em níveis diferentes. Algumas, como os neurônios nunca se dividem. Outras, como as epiteliais, dividem-se rápida e continuamente.

CICLO CELULAR OU CICLO DE DIVISÃO CELULAR

O ciclo celular compreende os processos que ocorrem desde a formação de uma célula até sua própria divisão em duas células filhas. A principal característica é sua natureza cíclica. O estudo clássico da divisão celular estabelece duas etapas no ciclo celular; de um lado aquela em que a célula se divide originando duas células descendentes e que é caracterizada pela divisão do núcleo (mitose ) e a divisão do citoplasma (citocinese). A etapa seguinte, em que a célula não apresenta mudanças morfológicas, é compreendida no espaço entre duas divisões celulares sucessivas e foi denominada de interfase.
Pôr muito tempo os citologistas preocuparam-se com o período de divisão, e a interfase era considerada como uma fase de repouso. Mais tarde observou-se, no entanto, que a interfase era uma fase de atividade biossintetica intensa, durante a qual a célula duplica seu DNA e dobra de tamanho. O estudo do ciclo celular sofreu uma revolução nos últimos anos. No passado o ciclo era monitorado através de M.O e o foco de atenção era a segregação dos cromossomos que é a parte microscopicamente visível.
Técnicas especiais de estudo como a raudiautografia permitiram demostrar que a duplicação do DNA ocorre em determinado período da interfase o que permitiu a divisão da interfase em 3 estágios sucessivos, G1, S e G2, o que compreende em geral cerca de 90% do tempo do ciclo celular.
Onde G1 compreende o tempo decorrido entre o final da mitose e inicio da síntese. O período S corresponde ao período de duplicação do DNA e o período G2, o período entre o final da síntese e o inicio da mitose.
Período G1: Este período se caracteriza por uma intensa síntese de RNA e proteínas, ocorrendo um marcante aumento do citoplasma da célula - filha recém formada. É nesta fase que se refaz o citoplasma, dividido durante a mitose.
No período G1 a cromatina esta esticada e não distinguível como cromossomos individualizados ao MO. Este é o estágio mais variável em termos de tempo. Pode durar horas, meses ou anos. Nos tecidos de rápida renovação, cujas células estão constantemente em divisão, o período G1 é curto; como exemplo temos o epitélio que reveste o intestino delgado, que se renova a cada 3 dias. Outro tecido com proliferação intensa é a medula óssea, onde se formam hemácias e certos glóbulos brancos do sangue. Todos estes tecidos são extremamente sensíveis aos tratamentos que afetam a replicação do DNA (drogas e radiações ), razão pela qual são os primeiros a lesados nos tratamentos pela quimioterapia do câncer ou na radioterapia em geral. Outros tecidos não manifestam tão rapidamente lesões por apresentarem proliferação mais lenta, tal como ocorre na epiderme ( 20 dias ) e no testículo (64 dias ).
Tecidos cujas células se reproduzem muito raramente, como a fibra muscular, ou que nunca se dividem, como os neurônios do tecido nervoso, o ciclo celular esta interrompido em G1 em um ponto específico denominado G0.

PERÍODOS: Este é o período de síntese. Inicialmente a célula aumenta a quantidade de DNA polimerase e RNA e duplica seu DNA. As duas cadeias que constituem a dupla hélice separam-se e cada nucleotídeo serve de molde para a síntese de uma nova molécula de DNA devido a polimerização de desoxinucleotídeos sobre o molde da cadeia inicial, graças a atividade da DNA polimerase. Esta duplicação obedece o pareamento de bases onde A pareia com T e C com G e como resultado teremos uma molécula filha que é a replica da molécula original. A célula agora possui o dobro de quantidade de DNA.
O estudo das alterações provocadas no DNA por radiações ultravioletas ou raio X, demonstrou que nem sempre o efeito dessas radiações era letal. A analise deste fenômeno levou ao conhecimento de vários tipos de mecanismos de reparação do DNA das células.
Nas células normais as alterações produzidas por radiações são reparadas antes de terem tempo de se transmitirem as células - filhas. Este sistema possui grande importância na seleção evolutiva das espécies, pois teriam uma condição essencial para o desenvolvimento de organismos com quantidades cada vez maiores de DNA e com maior número de células.

PERÍODO G2: O período G2 representa um tempo adicional para o crescimento celular, de maneira que a célula possa assegurar uma completa replicação do DNA antes da mitose. Neste período ocorre uma discreta síntese de RNA e proteínas essenciais para o inicio da mitose. É considerado o segundo período de crescimento. Apesar desta divisão nos períodos de crescimento, atualmente sabe-se que ele é um processo continuo, sendo interrompido apenas brevemente no período de mitose. A célula agora esta preparada para a mitose, que é a fase final e microscopicamente visível do ciclo celular.

CONTROLE DO CICLO CELULAR

O ciclo celular é regulado pela interação de proteínas. Essas proteínas compõem o Sistema de Controle que conduz e coordena o desenvolvimento do ciclo celular. Essas proteínas surgiram a bilhões de anos e tem sido conservadas e transferidas de célula para célula ao longo da evolução
O ciclo celular em organismos multicelulares, é controlado por proteínas altamente específicas, denominadas de fatores de crescimento. Os fatores de crescimento regulam a proliferação celular através de uma rede complexa de cascatas bioquímicas que por sua vez regulam a transcrição gênica e a montagem e desmontagem de um sistema de controle. São conhecidas cerca de 50 proteínas que atuam como fatores de crescimento, liberados por várias tipos celulares. Para cada tipo de fator de crescimento, há um receptor específico, os quais algumas células expressam na sua superfície e outras não.
Os fatores de crescimento podem ser divididos em duas grandes classes: 1) Os fatores de crescimento de ampla especificidade, que afetam muitas classes de células, como por exemplo o PDGF ( fator de crescimento derivado das plaquetas) e o EGF ( fator de crescimento epidérmico ). A segunda classe de fatores de crescimento são os Estreita especificidade, que afetam células específicas.
A proliferação celular depende, de uma combinação específica de fatores de crescimento. Alguns FC estão presentes na circulação, porém a maioria dos FC é originada das células da vizinhança da célula afetada e agem como mediadores locais. Os FC além de serem responsáveis pela regulação do crescimento e da divisão celular estão também envolvidos em outras funções como: sobrevivência, diferenciação e migração celular.

FATORES DE CRESCIMENTO E CONTROLE DO CICLO CELULAR

Os fatores de crescimento liberados ligam-se a receptores de membrana das células alvo. A formação do complexo receptor - ligante, dispara a produção de moléculas de sinalização intracelular. Essas moléculas são responsáveis pela ativação de uma cascata de fosforilação intracelular, que induz a expressão de genes.
O produto da expressão destes genes são os componentes essenciais do Sistema de Controle do Ciclo celular, que é composto principalmente por duas famílias de proteínas:
1. CdK ( cyclin - dependent protein Kinase ) que induz a continuidade do
processo através da fosforilação de proteínas selecionadas
2. Cyclins que são proteínas especializadas na ativação de proteínas. Essas proteínas se ligam a CdK e controlam a fosforilação de proteínas alvo. São reconhecidas duas famílias de Cyclins: Cyclins G1 e Cyclins G2
O ciclo de montagem, ativação e desmontagem do complexo Cyclin-CdK são os eventos bases que dirigem o ciclo celular.
O ciclo é regulado para parar em pontos específicos. Esses pontos permitem que o sistema de controle sofra influência do meio.
Nesses pontos de parada são realizados check up. São reconhecidos dois pontos de Check point:
- Em G1 - antes da célula entrar na fase S do ciclo
- Em G2 antes da célula entrar em mitose. Nestes pontos são checados as condições do meio extracelular e da própria célula.
O controle do ciclo nesses pontos é realizado por duas famílias de proteínas: No período G1 ocorre a montagem do complexo Cyclin-CdK que fosforiliza proteínas especificas induzindo a célula a entrar no período S. O complexo se desfaz com a desintegração da cyclin.
No período G2 as cyclins mitóticas ligam-se a proteínas CdK formando um complexo denominado de MPF (M.phase Promiting Factor ) que é ativado por enzimas e desencadeiam eventos que levam a célula a entrar em mitose. O complexo é desfeito pela degradação da cyclin mitótica quando a célula esta entre a metáfase e anáfase induzindo a célula a sair da mitose. Assim cada passo da ativação ou desativação marca uma transição no ciclo celular. Essa transição por sua vez iniciam reações que servem de gatilhos para a continuidade do processo.
Existem duas preposições para explicar a atuação do sistema de controle:
Cada bloco indica um processo essencial no ciclo ( Replicação do DNA, síntese de proteínas, formação do fuso..)
Na hipótese A. cada processo ativa o processo seguinte, num efeito dominó. A hipótese B ajusta-se melhor ao ciclo celular onde os sistemas de controle do ciclo ativam a continuidade do processo.

MITOSE

A mitose ( do grego: mitos = filamento ) é um processo de divisão celular, característico de todas as células somática vegetais e animais. É um processo continuo que é dividido didaticamente em 5 fases: Profáse, metáfase, anáfase, telófase, nas quais ocorrem grande modificações no núcleo e no citoplasma. O desenvolvimento das sucessivas fases da mitose são dependentes dos componentes do aparelho mitótico.
O aparelho mitótico é constituído pelos fusos, centríolos, ásteres e cromossomos. O áster é um grupo de microtúbulos irradiados que convergem em direção do centríolo.
As fibras do fuso são constituídas por:
1. microtúbulos polares que se originam no polo.
2. Microtúbulos cinetecóricos, que se originam nos cinetecóro
3. Microtúbulos livres.
Cada cromossoma é composto por duas estruturas simétricas: as cromátides, cada uma delas contém uma única molécula de DNA. As cromátides estão ligadas entre si através do centrômero, que é uma região do cromossoma que se liga ao fuso mitótico, e se localiza num segmento mais fino denominado de constricção primária.

FASES DA MITOSE

PROFÁSE: Nesta fase cada cromossoma é composto pôr 2 cromátides resultantes da duplicação do DNA no período S. Estas cromátides estão unidas pelos filamentos do centrômero. A Profáse caracteriza-se pela contração dos cromossomas, que tornam-se mais curtos e grossos devido ao processo de enrolamento ou helicoidização.
Os nucléolos se desorganizam e os centríolos, que foram duplicados durante a interfase, migram um par para cada polo celular.
O citoesqueleto se desorganiza e seus elementos vão constituir -se no principal componente do fuso mitótico que inicia sua formação do lado de fora do núcleo. O fuso mitótico é uma estrutura bipolar composta por microtúbulos e proteínas associadas. O final da Profáse, também é denominada de pré-metáfase, sendo a principal característica desta fase, o desmembramento do envoltório nuclear em pequenas vesículas que se espalham pelo citoplasma.
O fuso é formado por microtúbulos ancorados nos centrossomas e que crescem em todas as direções. Quando os MT dos centrossomos opostos interagem na Zona de sobreposição, proteínas especializadas estabilizam o crescimento dos MT. Os cinetecoros ligam-se na extremidade de crescimento dos MT.
O fuso agora entra na região do nuclear e inicia-se o alinhamento dos cromossomos para o plano equatorial.

METÁFASE: Nesta fase os cromossomas duplos ocupam o plano equatorial do aparelho mitótico.
Os cromossomas adotam uma orientação radial, formando a placa equatorial. Os cinetecoros das duas cromátides estão voltados para os pólos opostos.
Ocorre um equilíbrio de forças.

ANÁFASE: Inicia-se quando os centrômeros tornam-se funcionalmente duplos. Com a separação dos centrômeros, as cromátides separam-se e iniciam sua migração em direção aos pólos. O centrômero precede o resto da cromátide. Os cromossomas são puxados pelas fibras do fuso e assumem um formato característico em V ou L dependendo do tipo de cromossoma. A anáfase caracteriza-se pela migração polar dos cromossomas. Os cromossomos movem-se na mesma velocidade cerca de 1 micrômetro por minuto.

TELÔFASE: A telófase inicia-se quando os cromosomas-filhos alcançam os pólos. Os MT cinetocóricos desaparecem e os MT polares alongam-se. Os cromossomas começam a se desenrolar, num processo inverso a Profáse. Estes cromossomas agrupam-se em massas de cromatina que são circundadas pôr cisternas de RE, os quais se fundem para formar um novo envoltório nuclear.

CITOCINESE: Ë o processo de clivagem e separação do citoplasma. A citocinese tem inicio na anáfase e termina após a tolófase com a formação das células filhas.
Em células animais forma-se uma constricção, ao nível da zona equatorial da célula mãe, que progride e estrangula o citoplasma. Esta constrição é devida a interação molecular de atina e miosina e microtúbulos. Como resultado de uma divisão mitótica teremos 2 células filhas com numero de cromossomas iguais a da célula mãe.

ATIVIDADE DE SÍNTESE NO CICLO CELULAR

O conteúdo de proteínas total de uma célula típica aumenta mais ou menos continuamente durante o ciclo. Da mesma maneira a síntese de RNA continua constante, com exceção da Fase M, a maioria das proteínas são sintetizadas durante as diferentes fases do ciclo, portanto o crescimento é um processo contínuo e constante, interrompido brevemente na fase M, quando o núcleo e a célula se dividem.
O período mitótico caracteriza-se pela baixa atividade bioquímica; durante este período a maior parte da atividades metabólicas, e em especial a síntese de macromoléculas, esta deprimida. Neste sentido não se observou nenhuma síntese de DNA durante o período mitótico, enquanto que a intensidade da síntese de RNA e proteínas se reduz de maneira marcante na prófase, mantendo-se em níveis mínimos durante a metáfase e anáfase; com a telófase reinicia-se a síntese de RNA e no final desta etapa, com o começo de G1, se restaura a intensidade de síntese de proteínas. É fácil compreender a queda de síntese de RNA que caracteriza a mitose, pois a condensação da cromatina para formar cromossomas deve bloquear a possibilidade de transcrição.

MEIOSE

Organismos simples podem reproduzir-se através de divisões simples. Este tipo de reprodução assexuada é simples e direta e produz organismos geneticamente iguais. A reprodução sexual por sua vez, envolve uma mistura de genomas de 2 indivíduos, para produzir um indivíduo que diferem geneticamente de seus parentais.
O ciclo reprodutivo sexual envolve a alternância de gerações de células haplóides, com gerações de células diplóides. A mistura de genomas é realizada pela fusão de células haplóides que formam células diplóides. Posteriormente novas células diplóides são geradas quando os descendentes de células diplóides se dividem pelo processo de meiose.
Com exceção dos cromossomos que determinam o sexo, um núcleo de célula diplóide contém 2 versões similares de cada cromossomo autossomo, um cromossomo paterno e 1 cromossoma materno. Essas duas versões são chamadas de homologas, e na maioria das células possuem existência como cromossomos independentes. Essas duas versões são denominadas de homólogos. Quando o DNA é duplicado pelo processo de replicação, cada um desses cromossomos é replicado dando origem as cromátides que são então separadas durante a anáfase e migram para os pólos celulares. Desta maneira cada célula filha recebe uma cópia do cromossomo paterno e uma cópia do cromossoma materno.
Vimos que a mitose resulta em células com o mesmo número de cromossomas, se ocorre - se a fusão dessas células, teríamos como resultado células com o dobro de cromossomas e isso ocorreria em progressão. Exemplificando: O homem possui 46 cromossomas, a fusão resultaria em uma célula com 92 cromossomas. A meiose desenvolveu-se para evitar essa progressão.
A meiose ( meioum = diminuir ) ocorre nas células produtoras de gametas. Os gametas masculinos e femininos ( espermatozóides e óvulos ) que são produzidos nos testículos e ovários respectivamente as gônadas femininas e masculinas. Os gametas se originam de células denominadas espermatogonias e ovogonias.
A meiose é precedida por um período de interfase ( G1, S, G2 ) com eventos semelhantes aos observados na mitose.
As espermatogônias e ovogônias, que são células diplóides, sofrem sucessivas divisões mitóticas. As células filhas dessas células desenvolvem ciclo celular, e num determinado momento da fase G2 do ciclo celular ocorrem alterações que levam as células a entrar em meiose e darem origem a células háploides ou seja células que possuem a metade do número ( n) de cromossomas da espécie. A regulação do processo meiótico inicia-se durante a fase mitótica, onde observam-se: 1) Período S longo; 2) aumento do volume nuclear. Experimentalmente demonstra-se que eventos decisivos ocorrem em G2, devido a ativação de sítios únicos para a meiose. Podemos definir meiose como sendo o processo pelo qual número de cromossomos é reduzido a metade.
Na meiose o cromossomo produzido possui apenas a metade do número de cromossomos, ou seja somente um cromossomo no lugar de um par de homólogos. O gameta é dotado de uma cópia do cromossoma materno ou paterno. A meiose é um processo que envolve 2 divisões celulares com somente uma duplicação de cromossomas.

Fonte:
http://orbita.starmedia.com/~achouhp/biologia/divisao_celular.htm


Divisao celular

Existem basicamente dois tipos de divisão celular: a mitose e a meiose.
Uma célula, dividindo-se por mitose, dá origem a duas novas células com o mesmo número de cromossomos da célula inicial. A mitose é importante no crescimento dos organismos multicelulares e nos processos de regeneração de tecidos do corpo.
Na meiose, uma célula dá origem a quatro novas células com a metade do numero de cromossomos da célula inicial. A meiose é importante para a variabilidade gênica, sendo um tipo de divisão que ocorre no processo de formação do gametas nos indivíduos que apresentam reprodução sexual.
Sabemos que a reprodução é uma propriedade fundamental das células. As células se reproduzem através da duplicação de seus conteúdos e posterior divisão em duas células filhas, este processo é a garantia de uma sucessão contínua de células identicamente dotadas. Em organismos unicelulares, existe uma pressão seletiva para que cada célula cresça e se divida o mais rápido possível, porque a reprodução celular é responsável pelo aumento do número de indivíduos. Nos organismos multicelulares, a produção de novas células através da duplicação permite a divisão do trabalho, no qual grupos de células tornam-se especializados em determinada função. Essa multiplicação celular porém, tem que ser regulada porque a formação de novas células tem que compensar a perda de células pelos tecidos adultos. Um indivíduo adulto possui 10 x10 13 , todas derivadas de uma única célula, o óvulo fecundado. Mesmo em um organismo adulto, a multiplicação celular é um processo contínuo. O homem possui 2,5x10 13 eritrócitos, cujo tempo de vida médio e de 10 7 segundos ( 120 dias ) para manter esses níveis constantes são necessárias 2, 5 milhões de novas células pôr segundo. Apesar de inúmeras variações existentes, os diferentes tipos celulares apresentam um nível de divisão tal que é ótimo para o organismo como um todo, porque o que interessa é a sobrevivência do organismo como um todo e não de uma célula individual. Como resultado as células de um organismo dividem -se em níveis diferentes. Algumas, como os neurônios nunca se dividem. Outras, como as epiteliais, dividem-se rápida e continuamente.

Ciclo Celular

O ciclo é dividido em duas etapas básicas: a intérfase e a mitose. Tanto a intérfase como a mitose apresentam-se subdivididas em períodos ou fases. Os períodos da interfase são: G1, S e G2. As Fases da mitose são: prófase, metáfase, anáfase e telófase. A intérfase é sempre a fase mais demorada do que a mitose, correspondendo a 90% a 95% do tempo total gasto por uma célula durante o seu ciclo.

O ciclo celular compreende os processos que ocorrem desde a formação de uma célula até sua própria divisão em duas células filhas. A principal característica é sua natureza cíclica. O estudo clássico da divisão celular estabelece duas etapas no ciclo celular; de um lado aquela em que a célula se divide originando duas células descendentes e que é caracterizada pela divisão do núcleo ( mitose ) e a divisão do citoplasma ( citocinese ). A etapa seguinte, em que a célula não apresenta mudanças morfológicas, é compreendida no espaço entre duas divisões celulares sucessivas e foi denominada de intérfase. Pôr muito tempo os citologistas preocuparam-se com o período de divisão, e a interfase era considerada como uma fase de repouso. Mais tarde observou-se, no entanto, que a interfase era uma fase de atividade biossintética intensa, durante a qual a célula duplica seu DNA e dobra de tamanho. O estudo do ciclo celular sofreu uma revolução nos últimos anos. No passado o ciclo era monitorado através de M.O e o foco de atenção era a segregação dos cromossomos que é a parte microscopicamente visível. Técnicas especiais de estudo como a radiautografia permitiram demonstrar que a duplicação do DNA ocorre em determinado período da interfase o que permitiu a divisão da interfase em 3 estágios sucessivos, G1, S e G2, o que compreende em geral cerca de 90% do tempo do ciclo celular. Onde G1 compreende o tempo decorrido entre o final da mitose e inicio da síntese. O período S corresponde ao período de duplicação do DNA e o período G2, o período entre o final da síntese e o inicio da mitose.

Período G1: Este período se caracteriza por uma intensa síntese de RNA e proteínas, ocorrendo um marcante aumento do citoplasma da célula - filha recém formada. É nesta fase que se refaz o citoplasma, dividido durante a mitose. No período G1 a cromatina esta esticada e não distinguível como cromossomos individualizados ao MO. Este é o estágio mais variável em termos de tempo. Pode durar horas, meses ou anos. Nos tecidos de rápida renovação, cujas células estão constantemente em divisão, o período G1 é curto; como exemplo temos o epitélio que reveste o intestino delgado, que se renova a cada 3 dias. Outro tecido com proliferação intensa é a medula óssea, onde se formam hemácias e certos glóbulos brancos do sangue. Todos estes tecidos são extremamente sensíveis aos tratamentos que afetam a replicação do DNA (drogas e radiações ), razão pela qual são os primeiros a lesados nos tratamentos pela quimioterapia do câncer ou na radioterapia em geral. Outros tecidos não manifestam tão rapidamente lesões por apresentarem proliferação mais lenta, tal como ocorre na epiderme ( 20 dias ) e no testículo (64 dias ). Tecidos cujas células se reproduzem muito raramente, como a fibra muscular, ou que nunca se dividem, como os neurônios do tecido nervoso, o ciclo celular esta interrompido em G1 em um ponto específico denominado G0.

Período S: Este é o período de síntese. Inicialmente a célula aumenta a quantidade de DNA polimerase e RNA e duplica seu DNA. As duas cadeias que constituem a dupla hélice separam-se e cada nucleotídeo serve de molde para a síntese de uma nova molécula de DNA devido a polimerização de desoxinucleotídeos sobre o molde da cadeia inicial, graças a atividade da DNA polimerase. Esta duplicação obedece o pareamento de bases onde A pareia com T e C com G e como resultado teremos uma molécula filha que é a replica da molécula original. A célula agora possui o dobro de quantidade de DNA. O estudo das alterações provocadas no DNA por radiações ultravioletas ou raio X, demonstrou que nem sempre o efeito dessas radiações era letal. A analise deste fenômeno levou ao conhecimento de vários tipos de mecanismos de reparação do DNA das células. Nas células normais as alterações produzidas por radiações são reparadas antes de terem tempo de se transmitirem as células - filhas. Este sistema possui grande importância na seleção evolutiva das espécies, pois teriam uma condição essencial para o desenvolvimento de organismos com quantidades cada vez maiores de DNA e com maior número de células.

Período G2: O período G2 representa um tempo adicional para o crescimento celular, de maneira que a célula possa assegurar uma completa replicação do DNA antes da mitose. Neste período ocorre uma discreta síntese de RNA e proteínas essenciais para o inicio da mitose. É considerado o segundo período de crescimento. Apesar desta divisão nos períodos de crescimento, atualmente sabe-se que ele é um processo continuo, sendo interrompido apenas brevemente no período de mitose. A célula agora esta preparada para a mitose, que é a fase final e microscopicamente visível do ciclo celular.

CONTROLE DO CICLO CELULAR

O ciclo celular é regulado pela interação de proteínas. Essas proteínas compõem o Sistema de Controle que conduz e coordena o desenvolvimento do ciclo celular. Essas proteínas surgiram a bilhões de anos e tem sido conservadas e transferidas de célula para célula ao longo da evolução O ciclo celular em organismos multicelulares, é controlado por proteínas altamente específicas, denominadas de fatores de crescimento. Os fatores de crescimento regulam a proliferação celular através de uma rede complexa de cascatas bioquímicas que por sua vez regulam a transcrição gênica e a montagem e desmontagem de um sistema de controle. São conhecidas cerca de 50 proteínas que atuam como fatores de crescimento, liberados por várias tipos celulares. Para cada tipo de fator de crescimento, há um receptor específico, os quais algumas células expressam na sua superfície e outras não. Os fatores de crescimento podem ser divididos em duas grandes classes: 1) Os fatores de crescimento de ampla especificidade, que afetam muitas classes de células, como por exemplo o PDGF ( fator de crescimento derivado das plaquetas) e o EGF ( fator de crescimento epidérmico ). A segunda classe de fatores de crescimento são os Estreita especificidade, que afetam células específicas. A proliferação celular depende, de uma combinação específica de fatores de crescimento. Alguns FC estão presentes na circulação, porém a maioria dos FC é originada das células da vizinhança da célula afetada e agem como mediadores locais. Os FC além de serem responsáveis pela regulação do crescimento e da divisão celular estão também envolvidos em outras funções como: sobrevivência, diferenciação e migração celular.

FATORES DE CRESCIMENTO E CONTROLE DO CICLO CELULAR

Os fatores de crescimento liberados ligam-se a receptores de membrana das células alvo. A formação do complexo receptor - ligante, dispara a produção de moléculas de sinalização intracelular. Essas moléculas são responsáveis pela ativação de uma cascata de fosforilação intracelular, que induz a expressão de genes. O produto da expressão destes genes são os componentes essenciais do Sistema de Controle do Ciclo celular, que é composto pricipalmente por duas famílias de proteínas: 1. CdK ( cyclin - dependent protein Kinase ) que induz a continuidade do processo através da fosforilação de proteinas selecionadas 2. Cyclins que são proteínas especializadas na ativação de proteínas. Essas proteínas se ligam a CdK e controlam a fosforilação de proteínas alvo. São reconhecidas duas familias de Cyclins: Cyclins G1 e Cyclins G2 O ciclo de montagem, ativação e desmontagem do complexo cyclin-CdK são os eventos bases que dirigem o ciclo celular. O ciclo é regulado para parar em pontos específicos. Esses pontos permitem que o sistema de controle sofra influência do meio. Nesses pontos de parada são realizados check up. São reconhecidos dois pontos de Check point:
- Em G1 - antes da célula entrar na fase S do ciclo
- Em G2 antes da célula entrar em mitose. Nestes pontos são checados as condições do meio extracelular e da própria célula.
O controle do ciclo nesses pontos é realizado por duas famílias de proteínas: No período G1 ocorre a montagem do complexo Cyclin-CdK que fosforiliza proteínas especificas induzindo a célula a entrar no período S. O complexo se desfaz com a desintegração da cyclin. No período G2 as cyclins mitóticas ligam-se a proteínas CdK formando um complexo denominado de MPF (M.phase Promiting Factor ) que é ativado por enzimas e desencadeiam eventos que levam a célula a entrar em mitose. O complexo é desfeito pela degradação da cyclin mitótica quando a célula esta entre a metáfase e anáfase induzindo a célula a sair da mitose. Assim cada passo da ativação ou desativação marca uma transição no ciclo celular. Essa transição por sua vez iniciam reações que servem de gatilhos para a continuidade do processo. Existem duas preposições para explicar a atuação do sistema de controle: Cada bloco indica um processo essencial no ciclo ( Replicação do DNA, síntese de proteínas, formação do fuso..) Na hipótese A. cada processo ativa o processo seguinte, num efeito dominó. A hipótese B ajusta-se melhor ao ciclo celular onde os sistemas de controle do ciclo ativam a continuidade do processo.
MITOSE
A mitose ( do grego: mitos = filamento ) é um processo de divisão celular, característico de todas as células somática vegetais e animais. É um processo continuo que é dividido didaticamente em 5 fases: Profáse, metáfase, anáfase, telófase, nas quais ocorrem grande modificações no núcleo e no citoplasma. O desenvolvimento das sucessivas fases da mitose são dependentes dos componentes do aparelho mitótico.
Aparelho Mitótico
O aparelho mitótico é constituído pelos fusos, centríolos, ásteres e cromossomos. O áster é um grupo de microtúbulos irradiados que convergem em direção do centríolo. As fibras do fuso são constituídas por:
1. Microtúbulos polares que se originam no polo.
2. Microtúbulos cinetecóricos, que se originam nos cinetecóro
3. Microtúbulos livres.
Cada cromossomo é composto por duas estruturas simétricas: as cromátides, cada uma delas contém uma única molécula de DNA. As cromátides estão ligadas entre si através do centrômero, que é uma região do cromossomo que se liga ao fuso mitótico, e se localiza num segmento mais fino denominado de constrição primária.
Intérfase:
Na intérfase o núcleo das células apresenta: Carioteca, nucleoplasma, nucléolo e cromatina, característicos. Nesse período há intensa atividade celular e síntese de RNA. Quando a célula inicia divisão, observa-se alterações no núcleo que vão caracterizar as fases da mitose.
É na intérfase que ocorre a duplicação dos cromossomos, antes de iniciar a divisão. A intérfase é caracterizada pelos períodos: G1 (quantidade de DNA constante), S (duplicação do DNA) e G2 (inicia-se a mitose, quantidade de DNA retorna à quantidade inicial).
Mitose
Processo pelo qual as células de animais se dividem, produzindo, cada uma, duas células idênticas à original. A reprodução de células-filhas iguais à original tem como finalidade repor as células mortas no organismo, ou possibilitar o aumento do número delas nos processos de crescimento. Outro processo de divisão celular é a meiose, que produz quatro células com metade dos cromossomos da célula-mãe. No período que antecede a mitose, ocorre a duplicação dos cromossomos, numa fase denominada de interfase. Então, os filamentos simples de cromossomos passam a ser duplos, recebendo o nome de cromátides. Nas células humanas, os 23 cromossomos passam a ser 23 pares, unidos por um ponto denominado centrômero. A divisão da célula realiza-se em quatro diferentes fases: prófase, metáfase, anáfase e telófase.
- Prófase: Fase inicial da mitose, nota-se alterações no núcleo e no citoplasma, os cromossomos já duplicados começam a se condensar, tornando-se visíveis. Enquanto os cromossomos estão se condensando, o nucléolo começa a se tornar menos evidente, desaparecendo ao final da prófase. No citoplasma ocorre modificações no centro celular e nos microtúbulos do citoesqueleto. No início da prófase, os microtúbulos do citoesqueleto se desorganizam e as moléculas de tubulina que os compõem ficam livres no citosol, que irão compor o fuso mitótico. As fibras do áster dispõem-se radialmente apartir de cada centro celular. Essas fibras mais longas, agora formadas, partem de cada áster em direção à região equatorial da célula e recebe o nome de fibras polares. Ao final da prófase, surgem no centrômero de cada cromossomo duplicado duas estruturas especializadas, denominadas cinetócoros.

- Metáfase: Os cromossomos encontram-se alinhados em um mesmo plano na região equatorial da célula, denominado placa metafásica ou equatorial. Enquanto os cromossomos permanecem estacionários, verifica-se no citoplasma intensa movimentação de partículas e organelas, que se dirigem eqüitativamente para pólos opostos da célula.
- Anáfase: Inicia-se no momento em que o centrômero de cada cromossomo duplicado divide-se longitudinalmente, separando as cromátides-filhas. Assim que se separam, passam a ser chamados cromossomos-filhos e são puxados para os pólos opostos da célula, orientados pela fibra do fuso. Quando os cromossomos-filhos atingem os pólos das células, termina a anáfase. Assim, cada pólo recebe o mesmo material cromossômico, uma vez que cada cromossomo-filho possui a mesma informação genética.
- Telófase: Ocorre praticamente o inverso do que ocorreu na prófase: a carioteca se reorganiza, os cromossomos se descondensam, o cinetócoro e as fibras cinetocóricas desaparecem e o nucléolo se reorganiza. Os dois núcleos-filhos adquirem ao final da telófase o mesmo aspecto de um núcleo interfásico. As fibras polares não desaparecem nessa etapa, ficando restritas ao citoplasma.

MEIOSE
Processo de divisão celular no qual células diplóides, ou seja, com dois lotes de cromossomos, dão origem a quatro células haplóides, com apenas um lote de cromossomos. Essa forma de divisão possibilita a formação dos gametas (células sexuais). Nas células humanas diplóides existem 46 cromossomos. Através da meiose, elas passam a ter 23 cromossomos. No processo de fecundação humana, ocorre a união de dois gametas dos pais, resultando em um ovo com 46 cromossomos. A meiose é responsável pela diversificação do material genético nas espécies. A reprodução sexuada permite a mistura de genes de dois indivíduos diferentes da mesma espécie para produzir descendentes que diferem entre si e de seus pais em uma série de características. A meiose ocorre em duas etapas que, por sua vez, se subdividem em prófase, prómetafase, metáfase, anáfase e telófase. A fase que antecede a meiose é conhecida como interfase, quando os cromossomos da célula se duplicam e se apresentam como filamentos duplos, as cromátides. Dividimos em duas etapas: Meiose I e Meiose II.

Resumidamente, a meiose é um mecanismo destinado à distribuição das unidades hereditárias ou genes, permitindo sua recombinação independente e ao acaso. Com a distribuição aleatória dos homólogos maternos e paternos entre as células-filhas na divisão meiótica I, cada gameta recebe uma mistura diferente de cromossomos maternos e paternos.
Deste processo, um indivíduo poderia, a princípio, produzir 2n gametas diferentes, onde n é o número de haplóide de cromossomos. Em seres humanos, por exemplo, cada indivíduo pode produzir, no mínimo, 223 = 8,4 x 106 gametas geneticamente diferentes.
Porém, o número de variantes é muito maior, devido ao crossing-over, fenômeno que ocorre durante a longa prófase da divisão meiótica I. Este processo proporciona uma mistura da constituição genética de cada um dos cromossomos nos gametas.
A recombinação genética que decorre do crossing-over pode, eventualmente, traduzir-se numa vantagem evolutiva a uma espécie, ao longo dos anos.
A prófase I da meiose I foi dividida em 5 subfases consecutivas: Leptóteno, Zigóteno, Paquíteno, Diplóteno e Diacinese.
As fases da Meiose I
Prófase I:
- Leptóteno: Cada cromossomo é formado por duas cromátides. No leptóteno, os cromossomos duplicados iniciam a sua condensação, podendo-se notar a presença de regiões mais condensadas, chamadas cromômeros.
- Zigóteno: A condensação dos cromossomos progride e os homólogos pareiam-se num processo denominado Sinapse. O início do pareamento ocorre no zigóteno e se completa no paquíteno. Na mitose não há pareamento de homólogos.
- Paquíteno: Os cromossomos homólogos já estão perfeitamente emparelhados, sendo possível visualizá-los melhor. Cada par de cromossomos homólogos possui 4 cromátides, constituindo uma tétrade ou bivalente, formada por :
• - Cromátides- irmãs: Originam de um mesmo cromossomo;
• - Cromátides- homólogas: Originam de cromossomos homólogos.
Duas cromátides homólogas podem sofrer uma ruptura na mesma altura e os dois pedaços podem trocar de lugar, realizando assim, uma Permutação ou Crossing-Over. Em virtude do crossing-over, ocorre recombinação gênica, processo importante no aumento da variabilidade gênica da espécie.
- Diplóteno: Cromossomos homólogos começam a se afastar, mas permanecem ligados por regiões onde ocorreu crossing-over. Tais regiões constituem os quiasmas. O número de quiasmas fornece, então, o número de permutações ocorridas.
- Diacinese: Continua a ocorrer condensação dos cromossomos e a separação dos homólogos. Com isso, os quiasmas vão escorregando para as pontas das cromátides, processo denominado Terminalização dos Quiasmas.
Metáfase I:
Os cromossomos duplicados e pareados permanecem dispostos no equador da célula. Os cromossomos atingem o máximo de condensação e os quiasmas mantêm os cromossomos homólogos unidos.
Anáfase I:
Caracteriza-se pelo deslocamento dos cromossomos para os pólos. O par de cromossomos homólogos separa-se, indo um cromossomo duplicado de cada par para um pólo da célula.
Não ocorre divisão do centrômero. Essa é uma importante diferença entre a anáfase da mitose e da meiose. Encontram-se 2n cromossomos não duplicados em cada pólo da célula e na meiose I encontram-se n cromossomos duplicados a esses cromossomos duplos da meiose I, isto é, às duas cromátides ligadas pelo centrômero dá-se o nome de Díades.
Telófase I:
Com a chegada das díades aos pólos, termina a anáfase I e tem início a telófase I. O que ocorre na telófase I da meiose é bastante semelhante ao que acontece na telófase da mitose: os cromossomos desespiralizam-se, a carioteca e o nucléolo reorganizam-se e ocorre a citocinese.
As Fases da Meiose II:
É extremamente semelhante à mitose. A formação de células haplóides a partir de outras haplóides só é possível porque ocorre, durante a meiose II, a separação das cromátides que formam as díades. Cada cromátide de uma díade dirige-se para um pólo diferente e já pode ser chamada cromossomo-irmão
Fonte: http://www.biomania.com.br/citologia/divisaocelular.php
Tem imagem (Tente depois)
DIVISÃO CELULAR
Este menu aparece várias vezes pela página.
Utilize-o para chegar onde você quiser, se quiser e quando quiser.
Se você não utilizá-lo não há problema pois a página possui uma seqüência lógica.


INTRO :
Vamos fazer uma agradável viagem pelos meandros da divisão celular. Se você não sabe sobre o que estamos falando tudo bem. Vamos descobrir juntos e perceber que aprender biologia não precisa (e nem deve) ser tedioso.
O objetivo desta página é mostrar a divisão celular de uma maneira acessível e lógica para
alunos de graduação que precisarão entender alguns conceitos e mecanismos para seus cursos
universitários.
Vamos ver que o nosso dia-a-dia está intimamente relacionado à divisão celular, e àquelas
novidades científicas que aparecem todos os dias na televisão também.
Não é preciso decorar nada porque tudo faz sentido aqui.


PRA COMEÇO DE CONVERSA...
O que é e como é uma célula ?
Qual sua forma? Qual seu conteúdo ? Como são suas organelas ?
As células são iguais em todos os tecidos ?


A CÉLULA
O que somos nós?
Somos seres vivos e todo ser vivo é constituído por células.
Mas o que é uma célula? Uma célula é a menor unidade viva de um ser vivo. Nós só conseguimos viver por que nossas células formam um conjunto que trabalha como tal.
Todas as suas células em conjunto formam o que você vê quando se olha no espelho.
Existem células que constituem a sua pele, outras que formam o seu cabelo, outras que captam o oxigênio que você retira do ar, outras que captam a luz que você enxerga e outras ainda que transformam essa luz num sinal químico e passam esse sinal para outras células. Esse sinal é o que indica o que outras células precisam fazer. Nós só entendemos o que se passa ao nosso redor por que tudo que chega até nós através dos 5 sentidos é transformado em sinais químicos por células que se comunicam pela linguagem química.
Para você entender melhor...

Veja aqui uma célula em perspectiva:
( Se quiser mais detalhes de suas estruturas clique na imagem)
celula.htmcelula.htm

As células sozinhas não têm inteligência. Quem tem inteligência é o organismo como um todo, ou seja, você. O seu pensamento na verdade é um monte de reações químicas acontecendo no seu cérebro, fazendo com que suas células se comuniquem, formando um conjunto de sinais que faz sentido para você lidar com o ambiente ao seu redor.
Quando um bebê nasce, ele não sabe onde começa e termina o próprio corpo. Conforme ele vai crescendo, suas células vão se comunicando através da linguagem química de modo que ele possa lidar com o ambiente e interpretá-lo através dessa mesma linguagem.
As células funcionam com respostas estereotipadas a estímulos químicos. Por exemplo: Para você mexer o dedinho do pé, um monte de células recebem estímulos químicos. Cada uma responde a este estímulo da mesma maneira sempre, então, seu dedo se mexe. Existem muitos estímulos chegando a toda hora a cada célula. O conjunto dos estímulos é que vai ocasionar uma dada ação. O conjunto de estímulos para mexer o dedinho para a direita ou para a esquerda são diferentes, então, o resultado é diferente.

GAMETAS E FERTILIZAÇÃO
Um dia, todos nós fomos bebês e crescemos desde então. Esse crescimento como você deve imaginar é devido ao aumento do número de células no corpo e isso se deve ao mecanismo de divisão celular, mais especificamente à Mitose.
Na Mitose uma célula se divide e dá origem a outra célula igual a ela.
Um dia, antes de sermos bebês foi nescessário que um espermatozóide de nosso pai fecundasse um óvulo de nossa mãe para que um zigoto fosse formado.
Tudo começou com...


espermatozóides tentando fecundar um óvulo.
detalhe da figura ao lado.
E resultou em...

Na espécie humana há um padrão de 23 pares de cromossomos (46 cromossomos), os quais metade (23 cromossomos) são de herança paterna trazidos pelo espermatozóide e a outra metade é de origem materna que já estavam no óvulo.
Nós costumamos falar em pares de cromossomos porque os cromossomos que vêm do nosso pai e da nossa mãe possuem a mesma função na célula. Se um cromossomo número 1 do pai tem um gene que vai ser responsável pela cor do olho, o da mãe também vai ter, só que a cor do olho vai ser dada pela ação dos 2 genes, um de cada um dos pais, funcionando juntos.
O cromossomo 1 de seu pai é diferente do cromossomo 2 dele mesmo, por que eles possuem genes diferentes e funções diferentes também. O mesmo se dá com sua mãe, com você e seu irmão e com todo mundo no planeta.

Você que tem 23 pares de cromossomos vai contribuir para seu filho com 23 cromossomos apenas e a outra metade virá de seu conjuge. Para que isso ocorra é necessário que ocorra o mecanismo de divisão celular chamado Meiose, onde a célula germinativa (célula que forma os gametas) irá formar 4 células com apenas 23 cromossomos cada uma.

CONTINUANDO EM NOSSA BUSCA PELO CONHECIMENTO...
Lembra-se que falamos sobre o crescimento do bebê? Então, vamos ver como se dá a divisão das células do corpo do bebê.
MITOSE:

Esta é um esquema geral de uma mitose:

Esta é a mitose observada pela técnica de imunofluorescência. em azul temos os cromossomos e em verde as fibras do fuso.

Esta é a mitose vista através de
uma técnica histológica de contraste.

Porque a Mitose ocorre desta forma ?
O que acontece em cada uma destas fases ?
Vamos acompanhar pausadamente cada etapa.

INTÉRFASE (Pré-Divisão Celular)
-estágio em que a maioria das células está. Todas as células que não estão se dividindo, estão
em Intérfase.
-É subdividida em 3 subestágios: G1 (crescimento inicial) S (duplicação de cromossomos) G2
(crescimento final).
-há duplicação de DNA menos na região do centrômero.
-fase de maior metabolismo celular.

PRÓFASE (Início da Divisão Celular)
-mobilização para a ação.
-condensação de cromatina.
Nucléolo e carioteca começam a desaparecer.
-centríolos migram para os pólos da célula (célula vegetal não tem centríolo).
-aparecem as fibras do fuso (célula vegetal também tem).

METÁFASE
-cromossomos presos às fibras do fuso provenientes dos 2 centríolos.
-cromossomos no equador da célula.
-máxima condensação dos cromossomos.
-no final há duplicação dos centrômeros.

ANÁFASE
-cromátides irmãs afastam-se, uma para cada polo da célula.
-fibras do fuso encurtam, puchando os cromossomos (quando estavam juntos eram cromátides
irmãs).

TELÓFASE
-cromossomos chegam aos pólos e se agregam
-ocorre o inverso da prófase: cromossomos se descondensam, 2 novas cariotecas são
reconstruídas (uma por pólo), desaparecem fibras do fuso, distribuição das organelas e
divisão do citoplasma. (NA FIGURA A CÉLULA ESTÁ NO INÍCIO DA TELÓFASE). A
divisão do citoplasma é chamada de citocinese.


INTÉRFASE (Pré-Divisão Celular)
-estágio em que a maioria das células está. Todas as células que não estão se dividindo, estão em Intérfase.
-É subdividida em 3 subestágios: G1 (crescimento inicial) S (duplicação de cromossomos) G2 (crescimento final).
-há duplicação de DNA menos na região do centrômero.
-fase de maior metabolismo celular.

MEIOSE:
PRÓFASE I (Início da Divisão Celular)
-os mesmos fenômenos da mitose também ocorrem aqui, mas, há aspectos diferenciado em relação aos cromossomos:
-os cromossomos homólogos se pareiam (isso chama-se sinapse), cada par de homólogos corresponde à uma tétrade ou bivalente.
-ocorre o fenômeno de. crossing-over(permutação).
aqui está um esquema de crosing-over
entre dois cromossomos homólogos
. METÁFASE I
-os cromossomos homólgos movem-se juntos para a região do equador.
-cada cromossomo homólogo liga-se a uma fibra do fuso pelo centrômero, enquanto que na mitose o centrômero ligava-se as fibras de ambos os pólos. ANÁFASE I
-os cromossomos homólogos vão cada um para um pólo da célula pelo encurtamento das fibra do fuso. TELÓFASE I
-cromossomos chegam aos pólos e se agregam.
-ocorre o inverso da prófase: cromossomos se descondensam, 2 novas cariotecas são reconstruídas (uma por pólo), desaparecem fibras do fuso, distribuição das organelas e divisão do citoplasma.


SEGUNDA DIVISÃO MEIÓTICA:
-tudo se passa simultaneamente nas duas células filhas, cada uma vai gerar mais uma célula filha que ao final totalizarão 4 células. Os esquemas de divisão são iguais o da MITOSE. Portanto, é só na segunda divisão da MEIOSE que ocorre a duplicação e separação dos centrômeros.

DIFERENÇAS FUNDAMENTAIS ENTRE MITOSE E MEIOSE:
- A MITOSE é chamada de divisão equacional, por que mantém o número de cromossomos da célula e a célula filha é igual a célula mãe. Uma célula 2n dá origem à duas células 2n. Ela ocorre em todas as células somáticas do corpo (células somáticas são as que não formam gametas). Não há permutação (crossing-over).
A MEIOSE é chamada de divisão reducional, por que há diminuição no número de cromossomos das células filhas ao final do processo, a célula filha é diferente da célula mãe, tanto por que de uma célula 2n formam-se 4 células n como por que ocorrem fenômenos de permutação e separação de homólogos. Ocorre apenas nas células germinativas (que dão origem aos gametas como testículos e ovário).

SUPERCURIOSO
A seguir você encontrará alguns assuntos relacionados com divisão celular que têm muito a ver com nosso dia-a-dia e que são aborados nos jornais e revistas.


CÂNCER ou NEOPLASIA
Neoplasia significa literalmente "novo crescimento". Uma definição atual diz que Neoplasia é uma massa anormal de tecido cuja divisão celular é excessiva e descoordenada com o dos tecidos normais. Esse crescimento persiste mesmo depois da cessação do estímulo que levou a essa mudança.
O termo "tumor" foi originalmente aplicado ao inchaço causado pela inflamação. Neoplasias também induzem inchaço e o antigo sentido que era atribuído ao tumor (= inchaço) perdeu-se, havendo hoje a equivalência entre esse e neoplasia. Oncologia (do grego "oncos" = tumor) é o estudo de tumores e neoplasias. Câncer é o termo comum para todos os tumores malignos. Embora a origem antiga do termo seja um tanto incerta, este provavelmente deriva do latim para caranguejo, "câncer" - talvez porque um câncer 'adere obstinadamente a qualquer parte da qual ele possa aproveitar-se, tal como um caranguejo.
Classicamente costuma-se dividir a neoplasia em dois tipos: a benigna e a maligna. Neoplasia benigna é aquela que não sofre metástase. Este tipo só produz efeitos deletérios ao paciente caso bloqueie alguma passagem natural ou o suprimento de sangue a algum órgão vital, podendo tornar-se fatal quando se desenvolve na cavidade craniana ou intravertebral (por efeitos mecânicos), ou mesmo quando ocorre ulceração através da pele ou mucosa intestinal, levando à hemorragia e infecções secundárias. Em geral, os tumores benignos podem ser removidos cirurgicamente levando à cura do paciente. A neoplasia maligna caracteriza-se por: 1) crescimento rápido e descontrolado da massa tumoral que pode vir a obstruir passagens naturais ou o suprimento sangüíneo a outros tecidos; 2) propriedade de se difundir e invadir outros tecidos (metástase). Essa difusão das células tumorais pode dar-se via sistema linfático, sangüíneo ou por implante. Portanto, a metástase transporta os efeitos destrutivos da neoplasia maligna aos tecidos normais mesmo que distantes porque o implante metastático tem a mesma propriedade invasiva, a mesma habilidade para seqüestrar o suprimento sangüíneo e o mesmo crescimento descontrolado do tumor primário.

VARIABILIDADE
Vocês já perceberam como os irmãos podem ser bem diferentes uns dos outros? Até os irmãos gêmeos dizigóticos também podem.
A propósito, os irmãos gêmeos dizigóticos são derivados da fecundação de 2 óvulos diferentes por 2 espermatozóides diferentes, ou seja, com patrimônios genéticos diferentes.
Os gêmeos unizigóticos já são derivados a partir de um mesmo óvulo fecundado apenas por 1 espermatozóide, então o que ocorre é que logo nos primeiros momentos da embriogênese, o embrião se divide em 2 e cada uma dessas 2 partes dará origem a um indivíduo. Os 2 indivíduos formados são idênticos genéticamente, ao contrário dos gêmeos dizigóticos que são apenas irmãos diferentes que conviveram juntos na gestação.
A variabilidade entre irmãos tem origem logo na Meiose de seus pais. Já na Prófase I quando os cromossomos homólogos pareiam-se, ocorre o fenômeno do crossing-over (permutação) onde o material genético existente nos cromossomos homólogos partenos e maternos misturam-se.
Esta mistura promove a variabilidade genética, pois, os cromossomos que serão passados aos filhos possuem combinações diferentes das provenientes dos pais, o que significa que novas combinações de produtos gênicos e interações gênicas serão testados pela interação com o ambiente e por conseguinte pela seleção natural.
Na Anáfase I, estes cromossomos homólogos recombinados migrarão cada um para um pólo da célula que ao final da Meiose I formarão 2 células com 23 cromossomos duplicados diferentes da célula mãe.
Na Metáfase II cada cromátide irmã, que já não são idênticas entre si, devido a recombinação na Prófase I, irá para um polo da célula formando mais 2 células filhas, totalizando 4 células filhas derivadas de 1 célula mãe. Esta fase aumenta ainda mais a variabilidade genética, pois, os gametas aqui formados são praticamente todos diferentes entre si e unir-se-ão a outro gameta derivado de um indivíduo de outro sexo que passou pelo mesmo processo gerador de combinações aleatórias.
É bom lembrar que o crossing-over é um mecanismo essencial na Meiose, pois além de promover a recombinação entre cromátides irmãs, o crossing-over mantêm os cromossomos homólogos unidos fisicamente, pareados e organizados para que as fibras do fuso puxem cada cromátide irmã para um polo da célula.
Mas, o que mantêm os cromossomos homólogos pareados corretamente?
A grande afinidade química existente entre os cromossomos homólogos, pois a sequência de DNA destes é muito semelhante.

CLONAGEM
Clonar é formar indivíduos idênticos geneticamente.
Antes de existir a ovelha Dolly, ou mesmo antes dos botânicos clonarem plantas (o que veio muito antes da Dolly), a natureza já fazia clones naturalmente. Se você tem um irmão gêmeo unizigótico, sua mãe já havia feito clones muito antes dos cientistas fazerem a Dolly.
Para um clone ser realmente um clone ele tem que ter também as mitocôndrias idênticas ao seu originador. Não vamos esquecer que as mitocôndrias também têm DNA, não é? E se for uma planta os cloroplastos tem que ser os mesmos também.
No caso, a ovelha Dolly não pode ser chamada de clone quanto ao censo estrito da palavra, pois no processo de sua clonagem as mitocôndrias de sua mãe doadora do núcleo celular não foram utilizadas. Na verdade, todas as mitocôndrias e o citoplasma original do organismo da Dolly não são de origem da mãe que doou o núcleo a ela, são da mãe que a gestou.
Qual é o pocesso de divisão celular que gera um clone?
Isso mesmo, é a MITOSE !
Lembrando que a mitose origina 2 células filhas idênticas à célula mãe.
Os gêmeos idênticos (ou gêmeos unizigóticos) são formados quando as células que sofrem mitose em um zigoto se separam e cada uma origina um indivíduo, assim o conteúdo genético e citoplasmático de ambos é igual.
E como são formados os gêmeos não idênticos (ou gêmeos dizigóticos)?
São formados através da fecundação de óvulos diferentes por espermatozóides diferentes. Os gêmeos dizigóticos são então iguais a dois irmãos, que possuem constituição genética distintas, mas que foram originados em uma mesma gestação.

Test-Drive

BIBLIOGRAFIA
COTRAN, R.S.; KUMAR, V.W.; ROBBINS, S. inflammation and repair. In: pathologic basis of disease. 5a. edição . W.B.Saunders Company, p. 53-64, 1989.
WILLIANS, J.F.; & MATTHAEI, K.I. Cancer induced body wasling. A review of cancer cachexia and a hypotesis. Asean J. Clin.Sci. 2: 158-187, 1981.
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell. 1994. 3oEdition. Garland ed.
Otto PG, Otto PA, Frota-Pessoa O. Genética Humana e Médica.1998. Ed. Roca LTDA.
Suzuki DT, Griffiths AJF, Miller JH, Lewontin RC. Introdução à Genética. 1992. 4o Ed. Guanabara Koogan.
Lehninger AL,Nelson DL,Cox MM. Princípios de Bioquímica.1995. 2 o ed. Sarvier ed.
Fonte: http://www.ib.usp.br/~crebs/divisao_celular/


DIVISÃO CELULAR

Introdução:

Em estudos de genética a preocupação básica é o entendimento de como as características são repassadas entre as gerações. De uma forma geral, podemos imaginar vários indivíduos de uma população que se intercruzam formando novos descendentes, que manifestarão fenótipos resultantes da ação e interação dos genes recebidos.

O processo de origem de novos indivíduos se inicia pela formação de gametas dos genitores e subsequente união entre os mesmos. Da fecundação forma-se a célula ovo, ou zigoto, que reconstitui o número de cromossomo da espécie. Esta célula inicial se desenvolve gerando o indivíduo adulto, formados por mais de um trilhão de células, a partir da célula original, como no caso da espécie humana. Verifica-se, portanto, que os processos reducionais e conservativos são fundamentais na transmissão das características hereditárias.


Mitose
Conceito

É o processo pelo qual é construído uma cópia exata de cada cromossomo, a informação genética é replicada e distribuída eqüitativamente aos 2 produtos finais. As características básicas da mitose são:
a) Distribuição eqüitativa e conservativa do número de cromossomos.
b) Distribuição eqüitativa e conservativa da informação genética.

Descrição das Fases

A - Intérfase
Na intérfase o núcleo apresenta um contorno nítido pela presença da membrana nuclear. Os cromossomos estão invisíveis devido ao índice de refração ser igual a da cariolinfa (suco nuclear) e a problemas tinturiais. Os cromossomos começam a se diferenciar engrossando-se e tornando-se mais visível. O engrossamento se dá em parte pela espiralização e em parte pelo acúmulo de uma substância protéica denominada matriz (O cromossomo aumenta o diâmetro e diminui o tamanho). Ocorre a divisão longitudinal do cromossomo e replicação semi-conservativa da informação genética (DNA).

B - Prófase
Na prófase os cromossomos tornam-se mais espiralados, encurtando-se, aumentando o diâmetro e individualizando-se. Em preparações fixadas e coradas o cromossomo parece ser sólido e oval ou assemelha-se a um bastão. As cromátides já podem ser observadas no final da prófase. Elas mantêm-se unidas pelo centrômero, o qual se liga às fibras do fuso cromático. A membrana nuclear desaparece e os centríolos migram para os pólos.

C - Metáfase
Há formação da placa equatorial, ou seja os cromossomos se dispõe na posição mediana da célula, possibilitanto a distribuição equitativa da informação genética. Os cromossomos estão bem individualizados e fortemente condensados. Essa fase é adequada para se fazer contagem de cromossomos e verificação dealterações estruturais grosseiras. As linhas do fuso surgem em forma de linhas centrais (ou contínuas) ou de linhas cromossomais.

D- Anáfase
Ocorre a separação das cromátides que se dá inicialmente pelo centrômero e posteriormente ao longo de todo cromossomo. Cada unidade tem seu próprio centrômero. Esta é a fase mais adequada para visualizar a posição do centrômero .

E - Telófase
A membrana nuclear é reconstituída em torno de cada núcleo-filho e os nucléolos reaparecem. A citocinese ocorre.

Meiose


Conceito
A meiose é o processo que se verifica tanto nos órgãos sexuais masculinos quanto femininos. Através da meiose os gametas ficam com o número de cromossomos reduzidos à metade, ao estado denominado haplóide. Quando o gameta de origem materna se une ao gameta de origem paterna o número de cromossomos característico da espécie é restabelecido.
A meiose é um processo divisional, que, a partir de uma célula inicial com 2n cromossomos, leva à formação de células filhas com metade desse número. Também é definida como o processo que envolve duas divisões sucessivas do núcleo, acompanhada de uma só redução no número de cromossomos.
A divisão meiótica compreende 2 fases: a reducional (meiose I) e a equacional (meiose II).

Descrição das Fases

A - Intérfase
Na intérfase o núcleo apresenta-se bem individualizado pela presença da membrana nuclear. Os cromossomos começam a se diferenciar, engrossando-se e tornando-se mais visível. Ocorre a divisão longitudinal do cromossomo e replicação da informação genética, no modelo semi-consevativo.


B - Prófase I
A prófase I é estudada através de seus vários estágios dados a seguir.


B.1 - Leptóteno (filamentos finos)
É a fase inicial da prófase da primeira divisão meiótica. Os cromossomos aparecem unifilamentares (apesar da replicação já ter ocorrido) e as cromátides são invisíveis. A invisibilidade das cromátides permanece até a sub-fase de paquíteno.


B.2. Zigóteno
Durante o estágio de zigóteno cada cromossomo parece atrair o outro para um contato íntimo, à semelhança de um ziper. Este pareamento, denominado sinapse, é altamente específico e ocorre entre todas as seções homólogas dos cromossomos, mesmo se essas seções estão presentes em outros cromossomos não homólogos.
Sabemos que para cada cromossomo contribuído por um pai, existe um que lhe e homólogo, contribuído pelo outro progenitor. São esses os cromossomos que se pareiam.


B.3. Paquíteno
O paquíteno é um estágio de progressivo encurtamento e enrolamento dos cromossomos que ocorre após o pareamento no zigóteno ter sido completado. No paquíteno as duas cromátides irmãs de um cromossomo homólogo estão associados às duas cromátides irmãs de seus homólogos. Esse grupo de 4 cromátides é conhecido como bivalente ou tétrades e uma série de troca de material genético ocorre entre cromátides não irmãs de homólogos (Crossing-over)
O paquíteno é também o estágio em que uma estrutura chamada de complexo sinaptonêmico pode ser observada entre os cromossomos através de microscópios eletrônicos. Ele aparece como faixas de 3 componentes longitudinais organizados em 2 camadas laterais de elementos densos e a central constituída basicamente de proteínas. O complexo permite que os cromossomos estejam em um contato mais íntimo e mais preciso.


B.4. Diplóteno
No estágio de diplóteno cada cromossomo age como se repelisse o pareamento íntimo estabelecido entre os homólogos, especialmente próximo ao centrômero. Talvez isso ocorra devido ao desaparecimento da força de atração existente no paquíteno ou devido a uma nova força de repulsão que se manifesta.
A separação é impedida em algumas regiões, em lugares onde os filamentos se cruzam. Essas regiões ou pontos de intercâmbios genéticos, são conhecidas por quiasmas. Uma tétrade pode apresentar vários quiasmas dando figuras em configuração de V, X, O ou de correntes. Em muitos organismos suas posições e número parecem ser constantes para um particular cromossomo.


B.5. Diacinese
Na diacinese a espiralização e contração dos cromossomos continua até eles se apresentarem como corpúsculos grossos e compactos. Durante a fase final desse estágio ou início da metáfase I, a membrana nuclear dissolve e os bivalentes acoplam-se, através de seus centrômeros, às fibras do fuso cromático. O nucleolo desaparece. O número de quiasma é reduzido devido a terminalização. A terminalização é um processo pelo qual, dado o encurtamento dos filamentos e a força de repulsão existente entre homólogos, os quiasmas vão sendo empurrados para alguns se escaparem por completo.


C - Metáfase I
Nessa fase os bivalentes orientam-se aleatoriamente sobre a placa equatorial. Em geral os cromosssomos estão mais compactos que aqueles da fase correspondente da mitose e permitem uma contagem das unidades que estão presentes na parte mediana da célula.


D - Anáfase I
Nessa fase inicia a movimentação das díades para pólos opostos, mas não há rompimento dos centrômeros. Nesse caso há movimento de cromossomos inteiros para pólos opostos e, consequentemente, essa fase reduz o número de cromossomos a metade.
Essa fase é adequada ao estudo da posição dos centrômeros, pois as cromátides se abrem permanecendo unidas apenas pelos centrômeros e assim apresentando especiais. Nessa fase ainda ocorre algumas quebras de quiasmas que ainda restaram.


E - Telófase I
Como na mitose os dois grupos formados ou aglomerados nos pólos passam por uma série de transformações: A identidade das díades começa a desaparecer, os filamentos tornam-se a desespiralizar (perda de visibilidade). Os núcleos não chegam ao repouso total, pois logo após começa a se preparar para a segunda divisão meiótica. Variando de acordo com o organismo, uma divisão do citoplasma pode ou não se verificar imediatamente após a separação dos dois núcleos.


F - Intercinese
Fase que vai desde o final da primeira divisão até o início da segunda divisão. Essa fase difere da intérfase por não ocorrer a replicação da informação genética, tal como ocorre na intérfase.


G - Prófase II
Essa fase é muito mais simples que a prófase I, pois os cromossomos não passam por profundas modificações na intercinese. Ocorre os seguintes fenômenos: desaparecimento da membrana nuclear; formação do fuso cromático e movimentação das díades para a placa equatorial.


H - Metáfase II
Os cromossomos, agora em número reduzido à metade, alinham-se na placa equatorial da célula.


I- Anáfase II
Os centrômeros se dividem permitindo a separação das cromátides irmãs migrarem para pólos opostos. Essas cromátides poderão carregar informação genética diferente caso tenha ocorrido permuta durante a prófase I (paquíteno).


J - Telófase II
- Os cromossomos atingindo os pólos se aglomeram e as novas células são reconstituídas. Após a citocinese forma-se um grupo de 4 células haplóides denominadas de tétrades. Cada célula dessa meiose irá conter um grupo de cromossomos não homólogos.
Fonte: http://www.ufv.br/dbg/labgen/divcel.html


SITE NAO COPIADO: http://www.escolavesper.com.br/divisao_celular.htm